

 SEVENTH FRAMEWORK PROGRAMME

VIT
Vision for Innovative Transport

Project partly funded by the EC

Grant agreement no. 222199

SP4-Capacities - Research for SMEs

REPORT ON SOFTWARE PACKAGE OF TRAIN PROFILING

OCV AND TRAIN LOAD VERIFICATION

Deliverable D4.2

Release date 15 January 2010

Work package number WP4
Work package title 2D Train Scanning
Activity Type RTD

Page 2 of 24

About the Document

This document reports the technical details of the software package developed within WP4 on 2D
train profile construction and container code verification. It also describes the final field tests
carried out at Vado Ligure (IT) plant showing the effectiveness of the developed modules.

This document, together with the software release related to it, is Project Deliverable D4.2.

The document has been produced by the collaboration of the workpackage WP4, the
participants of the workpackage have all duly contributed to the activity of the workpackage
and the production of this document and they endorse the final version as the conclusion of
the workpackage.

Workpackage leader

Francesca Odone (DISI)

Document authors

Francesca Odone (DISI)
Alberto Lovato (IMA)
Emanuele Trucco (DUN)

Document reviewers

Renzo Ferraris (ILOG)
Thomas Keese (WIT)
Michele Molinari (MOL)

Page 3 of 24

Table of contents

INTRODUCTION .. 3

STRUCTURE OF THE REPORT.. 3
AUDIENCE... 3
1. OVERVIEW.. 3
2. RECONSTRUCTION OF THE TRAIN PROFILE.. 3

EXPERIMENTAL RESULTS.. 3
CONCLUSIONS .. 3

3. LOCALIZATION AND RECOGNITION OF THE OWNERSHIP CODE ... 3
EXPERIMENTAL RESULTS.. 3
CONCLUSIONS .. 3

4. DESCRIPTION OF THE SOFTWARE PROTOTYPE ... 3
MOSAICING SUITE... 3
CONTAINERS AND GAPS ESTIMATION.. 3
OCV SUITE ... 3

5. RELATED BIBLIOGRAPHY... 3

Page 4 of 24

INTRODUCTION

This report describes the last 6 months of RTD activity carried out within WP4. In particular, it
illustrates the final version of the software modules performing the 2D reconstruction of the train
profile and the optical character verification of container codes. It summarizes the implemented
solutions, highlighting the changes with respect to previous deliverables due to the results obtained
during field tests. Also it describes in details the experimental analysis carried out on the field, at
months 16 to 18 of the project.

Structure of the report
The report is organized with the following structure:

 1. Overview

 2. Reconstruction of the train profile and automatic load verification (including experiments)

 3. Localization and recognition of the ownership code (including experiments)

 4. Description of the software package (including examples of use)

 5. Related bibliography

AUDIENCE

The present deliverable is filed as Confidential, as it contains critical information for the VIT project
and also for the Metrocargo system.

Therefore the audience of the document is restricted the project participants --- the SME’s who will
find the technical details following their user requirements and the RTD performers who will use the
present report as a guideline of their research and development activity.

Page 5 of 24

1. Overview
This section reports an account of the overall RTD activity carried out in WP4, with a reference to
tasks as set in the project (Annex 1). User requirements given by the SME during the first months
(deliverable D2.1) are more explicitly addressed in sections 2 and 3, at the end of the technical
overview.

Task T4.2: Methods for train profile reconstruction and load verification

Stated purpose:
Study and design of image analysis methods for extracting the profile of the train, in terms of
loaded or empty wagons. Study, design and evaluation of global and local vision-based
methods for the verification of the train load.

Results at month 18:
o The pipeline for train profile reconstruction has been determined. Single modules of the

pipeline have been tested, with positive results well below the objectives set by user
requirements. The full pipeline has been tested on trains crossing the Vado Ligure plant.

o At month 12, geometrical methods for the verification of the correct placement of
containers on wagons, to be used in redundancy of those performed as part of the tasks
of WP3, have been studied, developed and evaluated. Experimental analysis shows a
sensitivity to noise superior to the objectives set by the SMEs in user requirements.

See Section 2 «Reconstruction of the train profile and automatic load verification».

Task T4.3: Ownership code identification

Stated purpose:
Implementation of automatic localisation and character recognition methods.

Results at month 18:
The pipeline for code character recognition has been designed, implemented and tested on the
field on trains crossing the Vado Ligure plant.

See Section 3 « Localization and recognition of the ownership code ».

2. Reconstruction of the train profile
The final version of the train profile reconstruction software prototype is composed by a the
following modules:

• Background removal on the train video sequence

• Computation of the train mosaic

• Rectangles and gaps detection on the mosaic

The remainder of the section reports implementation details.

Background removal
This module is based on the classical background estimation and change detection pipeline,
typical of video analysis systems. The peculiarities of the specific application domain are:

• The dynamic event (i.e., train arrival or train departure) represents a considerable scene
change, since its size is big compared to the whole viewed scene. This causes abrupt
illumination changes due to video-camera compensation, in particular if the camera quality
is low.

Page 6 of 24

• The depicted scenario is outdoor, therefore there is a need for modeling background noise
due to wind and temporary illumination changes (caused, for instance, by clouds passing
by).

The implemented solution, based on codebooks [KCDD05], has been shown very effective for
the application domain:

• Codebook training: the codebook model is constructed [KCDD05] on video sequences
portraying the scene in the few minutes preceding the arrival of the convoy

• Background removal: according to the model built in the previous step, pixels in each frame
are individually classified as background or foreground, and background pixels are deleted
(set to black). In order to minimize the impact of background segmentation errors (due
mainly to sudden changes in the scene illumination or of camera response - in case of
auto-iris or auto-white-balance) on the subsequent steps, image regions known a priori to
be part of the background (e.g, the sky region) are removed independently of adherence to
the background model.

Mosaicing
A mosaic is built in order to obtain a unique complete image of the whole train. The adopted
procedure exploits prior information on the nature of the train (a quasi planar object translating
in front of the video-camera) and may be summarized as follows:

• Feature tracking
o Select features to track via the Harris corner detector [HarrisStephens88]
o Filter out from this set features that are adjacent to the background
o Track features via the discrete version of the Lucas Kanade algorithm

[LucasKanade81]
o Filter out from the tracked feature those with no horizontal motion or a too big vertical

displacement

• Image stitching
o Estimate horizontal motion of the train by taking the median value of the horizontal

displacement

In the case a small number of features is detected an ad hoc procedure, based on exploiting
previous estimations of train velocity is applied.

Rectangle detection and selection
The final step consists of localizing rectangle shape objects in the mosaic image (that is,
containers) and estimating the length of gaps (gaps between wagons, and empty spaces on
wagons).

First we detect gaps between container (independently from their size), via the following
algorithm:

• For each column (i.e., for each value of x in the image coordinates) in the train profile,
count the foreground pixels.

• Segment continuous horizontal region for which the vertical pixel count does not exceed the
maximum possible height for a loading deck, plus a little tolerance to account for noise in
the background removal phase.

• The detected regions are considered load gaps.

The implemented method for rectangle detection may be summarized as follows:

• Extract lines from the mosaic image using Canny Edge Detection and Hough Line
Detection in cascade. We recall here that the Hough Line detection algorithm returns line
as a slope/intercept pair.

Page 7 of 24

• Filter out all lines which are neither approximately vertical nor horizontal. "Approximately"
here means we have given the algorithm a tolerance of a couple of sessagesimal degrees,
in order to compensate for the fact that the image were taken by a hand-held camera (for
stills), or on a camera on an unregistered tripod for movies.

• Mark in a separate list all vertical/horizontal lines that come from the edge between the
foreground and the subtracted background.

• Keep in the line list only those lines which are a number of pixel approximately equal to a
multiple of the container height (for horizontal lines) or width (for vertical lines) apart from a
parallel line on the foreground/background border.

• Distances between parallel vertical lines are potential container lengths. Distances between
parallel horizontal lines are potential container heights. Calculate them and build lists of the
line pairs with the respective distance.

• For each admitted specification of container size:
o Consider quartets made up of two parallel horizontal and two parallel vertical lines: they

are a superset of all possible rectangles in the image. Keep only those whose aspect
ratio and size are compatible (within a small tolerance) with the standard container
dimensions.

o Filter out the rectangles which are intersecting the background
o For any cluster of heavily intersecting rectangles, choose the representative having the

closest aspect ratio to the ideal one.

• If a bigger selected rectangle contains a pair of smaller ones, prefer the bigger rectangle
over the pair if and only if the pair admits intersection.

Instead, load gap detection is implemented as follows:

• For each column (i.e., for each value of x in the image coordinates) in the train profile,
count the foreground pixels.

• Segment continuous horizontal region for which the vertical pixel count does not exceed the
maximum possible height for a loadinig deck, plus a little tolerance to account for noise in
the background removal phase.

• The detected regions are considered load gaps.

Experimental results
Preliminary tests were carried out with a set of data acquired batch in two different circumnstances.

Batch tests
BATCH test set 1 – Arquata Scrivia Station (IT)

1. Acquisition type: Hand-held camera pictures of containers from convoys standing in
Arquata Scrivia station.

2. Data type: Simple. The pictures are evenly illuminated due to cloudy weather.

3. Content: various containers at different distances

4. Dataset size: a few tenth of images

BATCH test set 2 - Vado Ligure (IT)

1. Acquisition type: High resolution video cameras mounted on a tripod.

2. Data type: Medium

3. Content: empty trains

4. Dataset size: 2 videos of approximately 3 minutes each.

Page 8 of 24

The obtained results are in line with expectations.

• For what concerns batch test 1, being constituted by still images, we used it to test the
system robustness to container detection, and all containers have been correctly localized.

• As for the videos :
o Background subtraction and mosaic construction: a qualitative analysis reports

satisfactory results;
o rectangle detection: 1.5% errors
o gap estimation no errors

Field tests
The second and more consistent set of experiments was carried out on video-streams acquired
on the field by the video-cameras currently installed at Vado Ligure (IT).

More details on the available video-cameras can be found in Deliverable D5.2. Here we just
report a summary on the cameras appropriate for the our task:

1. CAM4 (the camera 4 reported in D5.2) – low-resolution video-surveillance camera
previously installed in the plant for remote surveillance of the plant;

2. MEGA – a megapixel high resolution camera, installed mainly to perform tasks of WP5.

The data acquisition process started at month 16.

A maximum of two freight trains per week passes on the rail line, therefore the number of
events of interest that may be recorded on site is limited. Luckily, the variability of weather
conditions during the field tests allowed us to obtain a very rich and meaningful set of data.
Table 1 reports a summary of the recorded videos, with comments on their features.

VideoID Camera Weather Train artifacts
M16-1-A CAM4 cloudy Empty
M16-2-A CAM4 sunny
M16-3-A CAM4 sunny Empty
M17-4-A CAM4 sun – wind
M17-5-A CAM4 sun – wind Train stops
M17-6-A CAM4 Cloudy Overexp.
M17-7-A CAM4 cloudy Overexp.
M18-1-A CAM4 Rain,mist
M18-2-A CAM4 rain
M17-1-B MEGA-far Cloudy Fast
M17-2-B MEGA-far Very sunny
M17-3-B MEGA-far Very sunny Underexp.
M17-4-B MEGA-close sun – wind
M17-5-B MEGA-close sun – wind Train stops
M17-6-B MEGA-close Cloudy
M17-7-B MEGA-close cloudy fast
M18-1-B MEGA-close Rain,mist
M18-2-B MEGA-close rain fast
M18-3-B MEGA-close Wind

Table 1 – summary of the trains acquired during the field tests

A few comments on the data are in order

• The quality of pre-existing video surveillance cameras is very low, the camera is over-
exposed and auto-iris makes it difficult to compute reliable backgrounds in difficult
illumination conditions

Page 9 of 24

• The Megapixel camera installation is prototypical and a more stable set up is needed.
Thanks to the use of a codebook model, background subtraction is rather robust to the
presence of wind (multiple codewords are associated to the same pixel to counter the
changes due to camera oscillation). Instead wind breaks the assumption that relative
motion between camera and train is translational, thus we may find artifacts in the
constructed mosaic. Current software version implements a set of heuristics to counter this
problem, but a more radical and effective solution would be a more stable camera
installation (that is following the course of Metrocargo plant maintenance).

• Trains are crossing the plant, since it is installed by the side of a working rail from Savona
Port to in-land. The ordinary week schedule includes two trains per week. Trains are not
meant to stop in the area, even if they slow down since there may be men at work. We
estimated average velocities around 15 Km/h, well within the user requirements. It was not
possible to test the system at different speeds, since we can not influence on trains
velocity.

• In spite of the fact that trains are rarely observed, the collected dataset is various enough
to obtain significant evaluations: each train contains about [25-40] containers, all types of
expected container types are present, some of them old and dirty, or otherwise blurred.
Also, weather conditions have been very variable in the acquisition time span (see Table 1).

Results:

• Table 2 reports the results obtained for mosaic construction on videos acquired by the
different camera types.
o CAM4 was excluded from further experiments since the quality was too low (Fig 1)
o MEGA-far was included in the evaluation although it has been decided that the level of

zoom was not appropriate for other operations (in particular code reading)
o MEGA-close returns good results (see Fig 2) and the final parameters configuration

found will be kept for future experiments. MEGA-close is divided in two groups since a
parameter tuning occurred in the middle.

Camera Type Qualitative evaluation

CAM4 Low-quality cameras are rather weak to background construction and feature
tracking. The obtained mosaics are often ruined with artifacts (see Figure 1)

MEGA-far
Good background construction and change detection (even in case of wind).
Robust feature tracking. Very strong wind affects mosaics quality, otherwise
the obtained results are quite good.

MEGA-close
(month 17)

As above. The presence of more high frequency details required a new system
configuration. Occasional faults of the camera (high sensitivity to contrast
adjustment and video-compression errors) caused errors to the mosaic
construction, otherwise results are good

MEGA-close
(month 18)

As above. A camera tuning improved the quality of the signal, thus results are
usually satisfactory

Table 2 – Qualitative analysis of mosaic construction steps

• Table 3 reports the obtained results on containers and gaps detection, highlighting the fact
that the final camera configuration is appropriate for the problem and the obtained results
are well below the user requirements (example images in Figures 3 and 4).

Camera Type Containers error % (average) Gaps error % (average)
MEGA-far 22% 8.4%
MEGA-close (month 17) 20.5% 3%
MEGA-close (month 18) 3.9% 0%

Table 3 – Quantitative analysis of containers and gaps localization

Page 10 of 24

Figure 1 – Comparison between CAM4 (top) and MEGA (bottom) on a rather difficult situation

(bright sun and wind) speaks in favor of the Megapixel technology

Figure 2 – A detail of a constructed mosaic from a Megapixel video (notice the background

removed and the quality of the obtained stitch)

Figure 3 – Containers and gaps detection on a small train

Figure 4 – Chuncks of a long video containing details on containers and gaps detection

Page 11 of 24

Conclusions
By user requirement:
o Reconstruct the train profile (as a sequence of empty or filled wagons)

• The field tests underlined that megapixel camera is appropriate for the task. Satisfactory
results were obtained under various weather conditions. The reconstructed trains include
all kinds of containers, and various configurations of filled and empty wagons.

o Verifying that each container or swap body is correctly loaded, i.e. that all retaining
blocks fit correctly the relevant corner fitting and that the container has been fully
lowered on the block.
• Laboratory tests carried out before month 12 lead us to conclude that the reliability level of

such operations based on video signals acquired from a distance is not high enough to
meet user requirements. Conversely, field tests carried out within WP3 showed how, a
close range view on the corner fittings is effective for such tasks, to the extent that a
redundant solution is not needed.

o Generate a recording of the sequence of containers on the trains, including the
information on their size (20’, 30’, 40’, 45’)
• The recording is generated and saved both on textual log files and on multi-media

material (the annotated mosaic image).
o Reconstruction can be done either whilst the train is coming to a stop in the station (in

this case in initial speed of 60 km/h with 1 m/sec2 deceleration should be considered)
or when it is standing in the station
• The implemented solution assumes that reconstruction is performed as the train enters or

leaves the station. The hypothesis of motion is used to counter the fact that with the
currently installed cameras the whole train would not be visible while it is standing in the
station. The developed software modules would be easily adapted (by changing the
mosaic construction module) in case of different plant configurations.

• For what concerns the trains speed, we had no influence on the speed of trains passing
by the plant. Most of them decelerated in the plant area (since there where humans
operating in the neighbourhood), and only one of them stopped. The estimated speeds
are about 15 Km/h.

By task goal:
o T4.2 - Study and design of image analysis methods for extracting the profile of the

train:
• Effective solutions for the problem under analysis have been studied, developed and

tested. A software prototype performing these tasks, given a video stream as a input is a
part of present deliverable.

o T4.2 - Study, design and evaluation of global and local vision-based methods for the
verification of the train load.
• The present feasibility study underlined the fact that the proposed solutions are not

effective for the problem.

By measurable objective:
The measurable objective set by the SME's for this task in the user requirements (deliverable
D2.1) is as follows:
o Maximum error percentage - reconstruction of the train profile: 1 position per train of

22 wagons equals 4.5% over the total number of observed wagons in standard
conditions, 2 positions equals 9% in extreme conditions. An error is observed either if
an empty slot of a wagon is missed, or a container size is wrongly associated.
• The final parameter setting for Megapixel camera allows us to achieve good results, below

the indicated measurable objectives, on a set of video-streams acquired in various (and
sometimes rather challenging) weather conditions

Page 12 of 24

3. Localization and recognition of the ownership code
The module prototype for localization and recognition of ownership codes has not been subjected
to significant changes with respect to what had already been described in deliverable D4.1, since
its performance has already been found to be fully compliant to the workpackage objectives at
month 12. Therefore, all that is written in deliverabe D4.1 still holds, and the reader could as well
refer to that.

A final summarization step, considering multiple occurrences of the same code over the image
sequence has been added.

Anyway, we will summarize the prototype architecture and its performance on an experimental
dataset again in this deliverable, for ease of reference.

o Segment the image into connected components using Niblack's algorithm [Niblack85]

o Filter out connected components if:
• the bounding box is outside the acceptable size range
• the aspect ratio [ZhuQiJiangXu07] is outside an acceptable range
• filter out connected components with low edge contrast [ZhuQiJiangXu07]
• for each connected component compute an appropriate feature vector that includes shape

and contrast information (see Deliverable D4.1 for details.

o Feed the resulting feature vector to an appropriately trained RLS classifier to classify text
elements.

o Combine text elements in text blocks by computing connected components on the characters
graph:
• characters are the graph nodes; graph edges connect two characters of similar height and

whose distance is lower than a threshold related to their height

o For each text block
• Compute the text orientation
• Compose the code string according to the computed text orientation
• Read each character of the string with an OCR system built via a OVA SVM classifier.
• Align the resulting string to the expected one via the Needleman-Wunsch [NW70]

algorithm.
• The distance between two strings (the expected and the estimated) is computed following

a variant of the Lehvenstein distance:
 Gaps in the read string contribute a value of one-half
 Gaps in the expected string are ignored
 Proper character mismatches contribute a value of one.

o The image is associated to a code if the computed distance does not exceed 3

Each frame of the video sequence is processed according to the above pipeline. To each frame we
associate at most one container code. A code is read if, considering all the frames associated to
the expected code, all the expected characters have been correctly read at least twice.

Experimental results

Batch tests (image based)
BATCH test set 1 – Various locations

Page 13 of 24

o Acquisition type: different locations (mainly containers repository areas) in various
weather and illumination conditions (heavy rain, shadow, direct sun) and with various input
devices (different photo- and video-cameras).

o Data type: medium/difficult. Images acquired by the RTD performers, mostly high
resolution

o Content: various containers at different distances

o Dataset size: 237 images.

The dataset has been collected to train data-driven modules (character detection, and OCR).
Thus the performed tests can provide us only with a separate cross-validation evaluation of the
error for each module:

o 2% for detection,

o 3.4% for character recognition.

We remark that given a more extensive dataset, in particular for character recognition, both
modules are capable of performing better.

We can however combine those error estimates into an estimate on the whole pipeline by a
stochastical simulation of the whole pipeline, in which errors are randomly introduced with the
probabilities estimated above. Performing such a simulation on a million container codes led the
system to:

o mistakenly reject a correct container code in 0.02% of cases (false negatives),

o to mistakenly accept a wrong container code in no observed case (false positives).

BATCH test set 2 – Images of Vado Ligure supplied by SMEs

o Acquisition type: close range image sequences of trains

o Data type: medium. During acquisition the scene was very well illuminated, shots are taken
close range (indeed, these images could not be used for Task 4.2 as the containers edges
are not visible) thus container codes are rather big. Images supplied by the SME's.

o Content: 2 trains at a fixed distance.

o Dataset size: 162 images

Being these images totally unrelated to the dataset a proper evaluation was possible:

o False negatives: the system mistakenly rejected one code (0.6% of the total).

o False positives: none.

Field tests (video-based)
Field tests were performed on the video-streams acquired at Vado Ligure (See table 1). A few
comments on the available data are in order:

o The quality of low-resolution video-surveillance camera is too low (codes are invisible even
to an human observer) therefore our analysis is limited to MEGA. For similar reasons, the
set referred to as MEGA-far in Table 1 is again unuseful for the task.

o The set referred to as MEGA-close is the most appropriate for the task, although a further
zoom in (which would be possible with the installed camera) will help enlarging the
characters to be read and simplifying the segmentation phase (indeed, current settings
have been chosen as a compromise between WP4 and WP5 requirements. An additional
camera will solve this issue.

o Since the amount of data available is limited we relied on the same training and validation
set used in previous analysis. The average size of characters on the training set is much
bigger (of at least one third) than the ones visible on test data.

Page 14 of 24

The analysis of errors is based on the following considerations:

o Container codes have been manually annotated to simulate the anticipated load plans.
This information allows us to estimate the number of false negatives (ie., container codes
belonging to the anticipated load plan and missing in the code verification)

o To deal with false positives, being in a verification problem codes belonging to the
anticipated load plan by mistake and erroneously verified in the verification phase we
simulated 10.000 random wrong codes for each container and tried to verify them (the
procedure is similar to the one followed during laboratory tests)

On the basis of these experimental specifications the obtained results are (average):

o False positives 0.042%

o False negatives 10.2%

At the beginning of month 18 the Megapixel camera has been tuned to improve its sharpness.
The results obtained in this limited time span are (on average):

o False positives 0.01%

o False negatives 4.3%

The weather conditions encountered during most of test sessions classify most of the situations
has hard or extreme.

The obtained results are rather satisfactory but there is also some space for improvement:

o During the live test sessions, due to the limited amount of trains, it was not possible to
gather an ad hoc dataset for the data-driven steps (text detection and OCR). A more
specific dataset would guarantee an improvement in the obtained results. Data are
currently being gathered at this purpose. We estimate that, considering the fact trains are
rare but rather long, in two months from the end of the project and ad hoc dataset will be
available

o A further zoom in of the camera and the consequent enlargement of text elements would
improve the quality of the obtained segmentation (see Fig. 5) and, as a consequence,
would lead to a better recognition. This is confirmed by batch data acquired under those
conditions that lead to a very low error rate.

Page 15 of 24

Original image (detail)

Connected Components computed via segmentation

Localized characters

Figure 5 – Preprocessing phase of the OCR module. On the left column a vary bad quality image,
produces a bad segmentation and a failure in the text localization module.

With good quality image (right) all task are correctly accomplished.

Page 16 of 24

Conclusions

By user requirement:
o Read and check against the foreseen load plan the ownership codes (alphanumeric

strings) painted on the side of each container. The painting may be faded and
damaged, per sample pictures supplied by SMEs

o Checking the ID and position of load units versus the anticipated load plan
o Verifying the correct loading of the containers in the foreseen positions, checking

their ID
o Verifying the correct loading of the containers in the foreseen positions of outgoing

trains, checking their ID by 2D train scanning. Due to the high level of accuracy of
control on the container location within the Metrocargo plant (practically zero error),
this verification is actually redundant and it is acceptable that it be done while train is
leaving the station. Any mistake thus detected will be dealt with at the following stop
of the train.
• The field tests underlined that the megapixel camera is effective for the task. Satisfactory

results were obtained under various weather conditions. The reconstructed trains include
all kinds of containers, different levels of damage and dirt, container codes located in
different positions, printed with different fonts and colors.

By task goal:
o T4.3 – Ownership code identification

• Effective solutions for the problem under analysis have been studied, developed and
tested. A software prototype performing these tasks, given a video stream as a input is a
part of present deliverable.

By measurable objective:
o Maximum error percentage on incoming train – automatic code reading: 1 container

out of 50 equal 2% in standard conditions, 2 containers equal 4% in extreme
conditions. A code is erroneously read if it will not match with the anticipated load
plan, leading to a remote human intervention, and the load plan is proven correct. A
direct human interventions is admitted if the visible ownership code is damaged to be
unreadable (it is not measurable).

o Maximum error percentage on outgoing train --- automatic code reading: 1 container
out of 50 equal 2% in standard conditions, 2 containers equals 4% in extreme
conditions. A code is erroneously read if it will not match with the load plan of the
Metrocargo plant, leading to notification to the general control system, to human
verification and subsequent action at the following station.
• The results obtained on the last batch of field tests in sub-optimal conditions (mostly

depicting hard or extreme weather conditions) are within the required percentages. Also, a
further zoom in of the Mega-pixel camera will allow for further improvements (as
demonstrated by previous batch experiments carried out on zoomed images distributed by
SME's). The available camera allows for this zoom, but current settings of the optics have
been chosen as a compromise with WP5 requirements. An additional camera will solve
this limitation.

Page 17 of 24

4. Description of the software prototype
Here is a description of the software prototype result of the feasibility study. We organize it in:

o Mosaicing suite

o Containers and gaps estimation suite

o OCV suite

Mosaicing suite

bgremove_tool

Usage: ./bgremove_tool [options] <input files>

Options:
 --help produce help message
 --skip arg (=0) Skip first n frames of the input files
 --start arg (=0) Start processing at given second of the video
 --end arg (=-1) End processing at given second of the video
 --mframes arg (=300) Number of frames used in building the bg model
 --seg-only Use opencv fg segmentation for foreground
 detection
 --both-masks Use both opencv fg segmentation and raw output
 masks. Creates two output for each input file
 --smalloutput Output frames at the same size of the ROI derived
 from roofline and groundline
 --roofline arg (=0) All pixels above this y value are considered bg
 --groundline arg (=-1) All pixels below this y value are considered bg
 --leftline arg (=0) All pixels left of this x value are considered bg
 --rightline arg (=-1) All pixels right of this x value are considered bg
 --aggressiveness arg (=1) Aggressiveness modifier for the bg subtractor
 --verbose be more verbose

Program description
This program is a proof-of-concept application written in order to check and demonstrate the
feasibility of codebook-based background subtraction in the train profile reconstruction pipeline.
A good quality background subtractor helps in feeding a better signal-to-noise ration in the
subsequent (mosaicing and gap/container detection) modules. In the current implementation of
the pipeline, gap detection is based exclusively on the classification as foreground or
background of pixels in the profile, so functioning of the background subtraction is necessary.

The program takes as input any number of .avi files, which get all processed according to the
same parameters, set via the command-line options. It outputs a black background, optionally
cropped (see description of the --smalloutput option) version of the input files, with .nobg.avi (by
default) or .nobg-segm.avi (see optiions --seg-only and --both-masks) appended to the
filename.

The algorithm on which the module is based is already described in sections above. Here only
the interface of the proof-of-concept executable will be documented.

Options description
--help: print a help message and exit.

--skip arg: Skip first arg frames of the input files. This in addition to any skipping specified via
the --start option; that is bgremove_tool --skip 3 --start 9 will start building a background
model after nine seconds and three frames of the input video. arg defaults to 0.

--start arg: Skip first arg seconds of the input files. This in addition to any skipping specified via

Page 18 of 24

the --skip option; that is bgremove_tool --start 3 --skip 9 will start building a background
model after three seconds and nine frames of the input video. arg defaults to 0.

--end arg: End processing at the second of the video specified by arg. This is used to clip the
output after the train has passed (in an integrated enviroment, this will be probably
replaced by a signal sent to the module by the system). The default value for arg, -1,
causes the system to process the input videos till their end.

--mframes arg: Number of frames used in building the bg model. Once a background model is
built, the system starts actual removal from subsequent frames. arg defaults to 300.

--seg-only: Use opencv fg segmentation on the foreground mask. This gives a foreground
mask with less "holes". When this option is given, the output file suffix turns from .nobg.avi
into .nobg-segm.avi.

--both-masks: Use both opencv foreground segmentation and raw output masks. Creates two
output files for each input file, with .nobg-segm.avi and .nobg.avi suffixes respectively.

--smalloutput: Output only the content of the rectangle of interest (ROI) specified by the --
roofline, --groundline, --leftline, and --rightline options. If this option is given, frames in
the output files will have the same size as the ROI. If this option is not given, frames in the
output file will have the same size as frames in the input files, and the area outside the
ROI will be classified as background regardless of the model built.

--roofline arg: Specifies the upper y coordinate of the ROI. All pixels above this y value are
automatically considered background. arg defaults to 0, meaning the upper border of the
ROI will coincide with the top of the image.

--groundline arg: Specifies the lower y coordinate of the ROI. All pixels below this y value are
automatically considered background. arg defaults to -1, meaning the lower border of the
ROI will coincide with the bottom of the image.

--leftline arg: Specifies the leftmost x coordinate of the ROI. All pixels left of this x value are
automatically considered background. arg defaults to 0, meaning the leftmost border of
the ROI will coincide with the leftmost border of the image.

--rightline arg: Specifies the rightmost x coordinate of the ROI. All pixels right of this x value are
automatically considered background. arg defaults to -1, meaning the rightmost border of
the ROI will coincide with the rightmost border of the image.

--aggressiveness arg: Aggressiveness modifier for background subtraction. arg must be a
positive number. Higher values will cause the subtraction to be performed more
aggressively, i.e. more pixels will be classified as background. This is implemented by
actually multiplying by arg the size of the interval around a background model codeword in
which a pixel is considered to fit the model . Consistently with this semantics, arg defaults
to 1.

--verbose Give a more verbose output to the console.

Parameters used in experiments
All experiments described in this report were performed with the --seg-only and --smalloutput
flags set.

Three different setups, corresponding to the three different camera setups in the dataset, were
used for the --roofline, --groundline, --leftline, --rightline and --aggressiveness parameters.
Those values have been keep fixed inside each dataset, simulating a fixed system setup.

In particular:
- CAM4: --roofline 50 --groundline 320 --leftline 50 --rightline 530 --

aggressiveness ???
- MEGA-far: --roofline 100 --groundline 442 --leftline 520 --rightline 936

--aggressiveness ???

Page 19 of 24

- MEGA-close: --roofline 80 --groundline 570 --leftline 500 --rightline
960 --aggressiveness ???

Each single video has instead its own values for --mframes and --end, depending on the
amount of available background footage and the time taken by the train passing.

Usage example
As an example, the included video M18-2-B, can be succesfully processed via the following
command line:
./bgremove_tool --aggressiveness 0.9 --roofline 80 --groundline 570 --
leftline 500 --rightline 960 --smalloutput --mframes 700 --end 259 --seg-
only M18-2-B.avi

Yielding a background-removed version called M18-2-B.avi.nobg-segm.avi.

mosaictrain

Usage: ./mosaictrain [options] <input files>

Options:
 --help produce help message
 --novideo suppress video output
 --nostop don't stop for debugging purposes
 --startpos arg (=0) Starting position in seconds
 --endpos arg (=-1) Stopping position in seconds
 --roofline arg (=0) Don't track features above this y value
 --groundline arg (=-1) Don't track features below this y value
 --leftline arg (=0) Don't track features left of this x value
 --rightline arg (=-1) Don't track features right of this x value
 --pptfu arg (=-1) Lenght of a TFU in pixels. Activates train velocity
 estimation.
 --verbose be more verbose

Program description
This program is a proof-of-concept application written in order to check and demonstrate the
feasibility of codebook-based background subtraction in the train profile reconstruction pipeline.
Bad quality mosaicing could lead to the failure of the whole pipeline, yielding reconstructed
images of the train profile which are not recognizable even by human vision.

The program takes as input any number of .avi files, which get all processed according to the
same parameters, set via the command-line options. It outputs one image of the whole of the
train for each video, named as the original file with the suffix .patchwork.png appended. By
default it also optionally displays, in real time, the tracking and mosaicing process, for
debugging purposes. In this case, it stops automatically on frames he recognizes as
problematical to track, unless given the --nostop option. If given a measure of conversion from
pixel to metres (via the --pptfu option) it displays in the tracking window also an estimate (in
km/h) of the train velocity.

This program yields better results on videos on which the background has already been
removed, for instance via bgremove_tool.

The algorithm on which the module is based is already described in previous sections. Here
only the interface of the proof-of-concept executable will be documented.

Options description
--help: print a help message and exit.

--novideo: Do not display the tracking and mosaicing process as it is performed. This flag is
meant for batch operation, and also implicitly includes --nostop

Page 20 of 24

--nostop: Don't wait for the user to press a key each time the program encounters a particularly
problematic frame. This option is implicit in --novideo.

--startpos arg: Start processing the video at the second specified by arg. Default is zero,
meaning the video is processed from the start.

--endpos arg: Stop processing the video at the second specified by arg. Default is minus one,
meaning the video is processed until the end.

--roofline arg: Do not look for features to track above the y value specified by arg. Default is
zero, meaning the upper limit to feature search is the top boundary of the frames.

--groundline arg: Do not look for features to track below the y value specified by arg. Default is
minus one, meaning the lower limit to feature search is the bottom boundary of the
frames.

--leftline arg: Do not look for features to track left of the x value specified by arg. Default is zero,
meaning the leftmost limit to feature search is the left boundary of the frames.

--rightline arg: Do not look for features to track above the y value specified by arg. Default is
zero, meaning the upper limit to feature search is the top boundary of the frames.

--pptfu arg: Specify the lenght of a TFU (20' unit) in pixels. The 20' lenght has been chosen
because it can be easily measured directly from a video snapshot. Giving this option
activates train velocity estimation. The default (meaning "unknown, do not convert from
pixels to real lenghts") is minus one.

--verbose Yields verbose output to the console.

Parameters used in experiments
All experiments described in this report were performed with the --seg-only and --smalloutput
flags set.

All experiments described in this report were performed with the --novideo flag set. This only
for a matter of convenience (batch processing), as the --novideo flag has no influence
whatsoever on the obtained image.

Three different setups, corresponding to the three different camera setups in the dataset, were
used for the --roofline and --groundline parameters, in order to limit the tracking of
perspective-deformed features on the container roofs and static features on the ground,
respectively. Those values have been keep fixed inside each dataset, simulating a fixed system
setup.

In particular:
- CAM4: --roofline 30

- MEGA-far: --pptfu 537 --roofline 60

- MEGA-close: --pptfu 675 --roofline 60 --groundline 400

No parameters have been changed at the single video level.

Usage example
As an example, the video M18-2-B.avi.nobg-segm.avi, obtained from included video M18-2-
B.avi via the command line in the last example, can be turned in a high-resolution image of the
whole convoy* by giving the following command:
./mosaictrain --pptfu 675 --roofline 60 --groundline 400 --nostop M18-2-
B.avi.nobg-segm.avi

Yielding an image of the train in the file M18-2-B.avi.nobg-segm.avi.patchwork.png.5.

Page 21 of 24

Containers and gaps estimation

Findcont.pyc

Usage: findcont.pyc [options] imagelist

Options:
 -h, --help show this help message and exit
 -t CANNY_LOW, --canny-low=CANNY_LOW
 Canny low threshold (default 50)
 -T CANNY_HIGH, --canny-high=CANNY_HIGH
 Set canny high threshold to CANNY_HIGH (default 200)
 -H HOUGH_THRESH, --hough-thresh=HOUGH_THRESH
 Set hough threshold to HOUGH_THRESH (default 100)
 -W CWIDTH, --cont-width=CWIDTH
 Approximate (+- 5%) container width in pixel. Default
 is zero, meaning that the program will ask just for a
 correct aspect ratio.
 --cont-height=CHEIGHT
 Approximate container height in pixel. To be manually
 set only for prospectical calibration, otherwise it
 will be automatically determined.
 -r ROOFLINE, --roofline=ROOFLINE
 y coordinate of the top line of the convoy ("container
 roofs")
 -g GAP_HEIGHT, --gap-height=GAP_HEIGHT
 Equivalent in metres of vertical foreground pixels for
 gap detection
 --two-hough Use separate hough filters for vertical and horizontal
 line detection.
 --with-hc Look also for high cube containers in the convoy.

Program description
This program is a proof-of-concept application written in order to check and demonstrate the
feasibility of rectangle-detection-based container localization and background-removal based
gap detection for the train profile reconstruction pipeline, of which it constitutes the last module.

The program takes as input any number of image files (in any format supported by opencv),
which get all processed according to the same parameters, set via the command-line options. It
outputs an annotated, human readable version image: near each detected container it writes
the type (out of 20 feet normal, 40 feet normal, 40 feet high-cube and 45 feet high-cube). Gaps
between container are marked by continuous lines, and an estimation of their lenght is shown.
Gaps big enough to fit at least one 20 feet container are highlighted in green, while the other
ones are marked in blue.

The output image filename is obtained by appending the suffix .profile.jpg to the filename (and
path) of the original image.

The algorithm on which the module is based is already described in section XXX. Here only the
interface of the proof-of-concept executable will be documented.

Options description
--help: print a help message and exit.

-h, --help: show a help message and exit

-t arg, --canny-low=arg: Set the low threshold of the Canny edge detector to arg. Default value
is 50

-T arg, --canny-high=arg: Set the low threshold of the Canny edge detector to arg. Default
value is 200.

Page 22 of 24

-H arg, --hough-thresh=arg: Set the threshold for the Hough transform line detector to arg.
Default value is 100

-W arg, --cont-width=arg: Assume that arg is the approximate (+- 5%) width in pixel for a
twenty feet container. Default value is zero, meaning that the program will look just for a
correct aspect ratio.

--cont-height=arg: Assume that arg is the approximate height in pixel for a twenty feet
container. To be manually set only for prospectical calibration, otherwise it will be
automatically determined.

-r arg, --roofline=arg: Assume that arg is the y coordinate of the top line of the convoy
("container roofs"), and use this assumption for container selection.

-g arg, --gap-height=arg: Equivalent in metres of vertical foreground pixels for gap detection.
Pixels columns in which at least arg metres worth of pixels have not been classified as
background will not be classified as part of a gap between containers.

--two-hough Use separate hough filters for vertical and horizontal line detection. The threshold
of the vertical line detector will be proportional to the horizontal one via the container
aspect ratio.

--with-hc Look also for high cube containers in the convoy. By default, the system looks only for
normal height containers.

Parameters used in experiments
All experiments described in this report were performed with the parameter -g set to 2.9.

Three different setups, corresponding to the three different camera setups in the dataset, were
of course used for the parameters specifying the 20 feet container height and width in pixels,
due to the different distances/zoom levels by which the cameras look at the train. Those values
have been keep fixed inside each dataset, simulating a fixed system setup.

In particular:
- MEGA-far: --cont-width=537

- MEGA-close: --cont--width=675 --cont-height=295

No parameters have been changed at the single video level.

Usage example
As an example, the train mosaic M18-2-B.avi.nobg-segm.avi.patchwork.png, obtained from
included video M18-2-B.avi via the command lines described in the previous examples, can
successfully processed by the following command:
./python findcont.pyc --pptfu 675 --roofline 60 --groundline 400 M18-2-
B.avi.nobg-segm.avi.patchwork.png

Yielding an annotated image of the train in file M18-2-B.avi.nobg-segm.avi.patchwork.png.profile.jpg

Page 23 of 24

OCV suite

check-codes

Usage: ./check-codes [options] ImageList outputfile

Where:

ImageList: file of rows of the format "<imagename> <expectedstring>"
outputfile: output filename. The output file will be written in the same

format of ImageList

Options:
 --locScale arg (=Modelli/scaleLoc) set custom scale file for character

localization
 --ocrScale arg (=Modelli/scaleOCR) set custom scale file for character

recognition
 --locModel arg (=Modelli/modelLoc) set custom model file for character

localization
 --ocrModel arg (=Modelli/modelOCR) set custom model file for character

recognition
 --minCharSize arg set minimum size of expected characets. -

1 disable all filters based on size
 --maxCharSize arg set maximum size of expected characters.

-1 disable all filters based on size
 --textdth arg threshold for text detection.
 --charSize arg mean expected char size used to set

internal parameters
 --readall read also images for which we are not

expecting a container code
 --help produce help message

Note: for each option is provided a default value and for the first four options with the executable
is delivered also a file that can be used as parameter.

Program description

The program take in input a sequence of video frames and container codes and check if in a
given frame is present the expected code.

The program need in input a file with the list of images and their corresponding codes formatted
with a sequence of rows of the form

<imagename> <expectedstring>

and generate an output file with the readed characters for each image. Each readed text block
is separated by a white space.

Usage example
./check-codes input-file output-file --maxCharSize 20 --minCharSize 10 --
textdth -1.5 --charSize 15

Page 24 of 24

5. Related bibliography
[Chan01] Y.K. Chan and C.C. Chang. Image matching using run-length feature. Patt. Recogn. Letters, 22(5),

2001
[Niblack85] W. Niblack. An introduction to digital image processing. Strandberg Pub. Company, Denmark,

1985.
[ZhuQiJiangXu07] K. Zhu, F. Qi, R. Jiang, and L. Xu. Automatic character detection and segmentation in

natural scene images. Journal of Zhejiang University-Science A, 8(1):63–71, 2007.
[ZhangLu04] D. Zhang and G. Lu. Review of shape representation and description techniques. Patt. Rec.,

37(1):1–19, 2004.
[ZDO09] L. Zini, A. Destrero and F. Odone. A classification architecture based on connected components for

the detection of text in unconstrained environments. Proceedings of the 6th IEEE International
Conference on Advanced Video and Signal Based Surveillance, 2009

[KCDD05] K. Kim, T. Chalidabhongse, H. David and L. Davis, Real-time foreground–background
segmentation using codebook model, Real-Time Imaging 11 (2005)

[HarrisStephens88] C. Harris and M.J. Stephens. A combined corner and edge detector. Alvey Vision
Conference, pages 147–152, 1988.

[LucasKanade81] Lucas B D and Kanade T 1981, An iterative image registration technique with an
application to stereo vision. Proceedings of Imaging understanding workshop, pp 121—130

[NW70] Needleman SB, Wunsch CD. (1970). "A general method applicable to the search for similarities in
the amino acid sequence of two proteins". J Mol Biol 48 (3): 443–53.

